发表论文
1. J. Wang, W. B. Lu*, Z. G. Liu*, A. Q. Zhang, and H. Chen, “Graphene-based Microwave Antennas with Reconfigurable Pattern,” IEEE Transactions on Antennas and Propagation, vol.68, no.4, pp. 2504–2510, Apr. 2019.
2. H. Chen, W. B. Lu*, Z. G. Liu*, and Z. H. Jiang, “Flexible Rasorber Based on Graphene With Energy Manipulation Function,” IEEE Transactions on Antennas and Propagation, vol.68, no.1, pp. 351-359, 2019.
3. A. Q. Zhang, W. B. Lu*, Z. G. Liu*, H. Chen, “A Tunable Attenuator Based on a Graphene-Loaded Coupled Microstrip Line,” IEEE Transactions on Microwave Theory and Techniques, vol.68, no.3, pp. 939-950, 2019.
4. B. B. Xing, Z. G. Liu, W. B. Lu*, and H. Chen, “Wideband Microwave Absorber with Dynamically Tunable Absorption Based on Graphene and Random Metasurface,” IEEE Antennas and Wireless Propagation Letters, vol.18, no.12, pp. 2602-2606, Dec. 2019.
5. W. L. Fu, Y. Q. Dai*, X. Y. Meng, W. L. Xu, J. Zhou, Z. G. Liu, W. B. Lu*, S. M. Wang, C. B. Huang and Y. M. Sun*, “Electronic Textiles Based on Aligned Electrospun Belt-like Cellulose Acetate Nanofibers and Graphene Sheets: Portable, Scalable and Eco-friendly Strain Sensor,” Nanotechnology, vol.30, pp. 045602, 2019.
6. H. Chen, Z. G. Liu*, W. B. Lu*, A. Q. Zhang, H. Chen, “A Broadband Tunable Coaxial Attenuator Based on Graphene,” IEEE Access, vol.7, pp. 127593-127599, 2019.
7. W. B. Lu*, H. Chen, Z. G. Liu, “A Review of Microwave Devices Based on CVD-grown Graphene with Experimental Demonstration”, EPJ Applied Metamaterials, vol.6, no.8, 2019.
8. X. B. Li, W. B. Lu*, J. Wang, et al, “Edge Mode Graphene Plasmons Based All-optical Logic Gates”, Photonics and Nanostructures-Fundamentals and Applications, no.33, pp. 66-69, 2019.
9. B. Wu*, Y. H. Zhang, H. R. Zu, C. Fan, W. B. Lu, “Tunable Grounded Coplanar Waveguide Attenuator Based on Graphene Nanoplates,” IEEE Microwave and Wireless Components Letters, vol.29, no.5, pp. 330-332, 2019.
10. A. Q. Zhang, W. B. Lu*, Z. G. Liu, et al, “Flexible and Dynamically Tunable Attenuator Based on Spoof Surface Plasmon Polaritons Waveguide Loaded With Graphene”, IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5582-5589, 2019.
11. B. Huang, S. P. Gao, Y. Liu, J. Wang, Z. G. Liu, Y. X. Guo*, W. B. Lu*, “Nano-antenna Enhanced Waveguide Integrated Light Source Based on an MIS Tunnel Junction”, Optics Letters, vol.44, no.9, pp. 2330-2333, 2019.
12. W. B. Lu*, J. W. Wang, J. Zhang, et al, “Flexible and Optically Transparent Microwave Absorber with Wide Bandwidth Based on Graphene”, Carbon, 2019.
13. H. Chen, Z. G. Liu*, W. B. Lu*, et al, “Flexible and Dynamically Tunable Spoof Surface Plasmon Polaritons Attenuator Integrated with Graphene”, Applied Physics Express, vol.12, no.7, pp. 074005, 2019.
14. H. R. Zu, B. Wu*, Y. T. Zhao, Q. S. Cheng*, W. B. Lu , “Dual-frequency-scanning Broadband Antenna Based on Z-shape Spoof Surface Plasmon Polaritons”, Applied Physics Express, vol.12, no.8, pp. 084004, 2019.
15. A. Q. Zhang, Z. G. Liu, W. B. Lu* and H. Chen, “Graphene-Based Dynaically Tunable Attenuator on a Coplanar Waveguide or a Slotline”, IEEE Transactions on Microwave Theory and Techniques, vol.67, no.1, pp. 70-77, 2019.
16. W. Xiang, T. Xiong, W. B. Lu*, W. Yang and Z. G. Liu, “New Accurate Subentire-Domain Basis Functions Method for the Analysis of Large-scale Finite Periodic Structures with Electrically Connected Cells”, IEEE Transactions on Antennas and Propagation, vol.67, no.3, pp. 2017-2022, 2019.
17. A. Q. Zhang, Z. G. Liu, W. B. Lu* and H. Chen, “Dynamically Tunable Attenuator on Graphene Based Microstrip Line”, IEEE Transactions on Microwave Theory and Techniques, vol.67, no.2, pp. 746-753, 2019.
18. B. Wu*, H. L. Li, Y. T. Zhao, Y. L. Wang, W. B. Lu, L. Chen, “Design and Validation of Flexible Multilayer Frequency Selective Surface With Transmission Zeros”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 2, pp. 250-254, 2018.
19. H. Chen, Z. G. Liu, W. B. Lu*, A. Q. Zhang, X. B. Li, J. Zhang, “Microwave Beam Reconfiguration Based on Graphene Ribbon”, IEEE Transactions on Antennas and Propagation, vol.66. no.11, pp. 6049-6056, 2018.
20. H. Chen, W. B. Lu*, Z. G. Liu, J. Zhang, A. Q. Zhang, B. Wu, “Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface”, IEEE Transactions on Microwave Theory and Techniques, vol.66, no.8, pp. 3807-3816, 2018.
21. A. Q. Zhang, W. B. Lu*, Z. G. Liu, “Dynamically Tunable Substrate-Integrated Waveguide Attenuator Using Graphene,” IEEE Transactions on Microwave Theory and Techniques, vol.66, no.6, pp. 3081-3089, 2018.
22. A. Q. Zhang, W. B. Lu*, Z. G. Liu, “Graphene-based Dynamically Tunable Attenuator on a Half-mode Substrate Integrated Waveguide,” Applied Physics Letters, vol.112, 161903, 2018.
23. B. H. Huang, W. B. Lu*, Z. G. Liu, “Low-energy High-speed Plasmonic Enhanced Modulator Using Graphene,” Optics Express, vol.26, no.6, 7358, 2018.
24. B. Wu, Y. Hu, Y. T. Zhao, W. B. Lu, “Large Angle Beam Steering THz Antenna Using Active Frequency Selective Surface Based on Hybrid Graphene-gold Structure,” Optics Express, vol.26, no.12, 15353, 2018.
25. H. Chen, W. B. Lu*, Z. G. Liu, J. Zhang and B. H. Huang, “Efficient Manipulation of Spoof Surfae Plasmon Polaritions Based on Rotated Complementary H-Shaped Resonator Metasurface,” IEEE Transactions on Antennas and Propagation, vol.65, no.12, pp. 7383-7388, 2017.
26. Z. G. Liu, W. B. Lu*, W. Yang, “Enhanced Bandwidth of Highly Directive Emission Fabry-Perot Resonator Antenna with Tapered Effective Near-zero Index Using Metasurface,” Scientific Reports, 7:11455, 2017.
27. Z. G. Liu, W. B. Lu*, “Low-Profile Design of Broadband High Gain Circularly Polarized Fabry-Perot Resonator Antenna and its Array with Linearly Polarized Feed,” IEEE Access, vol.5, pp. 7164-7172, 2017.
28. Z. G. Liu, W. B. Lu*, “Broadband Design of Circularly Polarized High Gain Fabry-Perot Resonator Antenna with Simple Array Thinning Technique,” Microwave and Optical Technology Letters, vol. 59, no.12, pp.3171-3176, 2017.
29. W. B. Lu*, J. L. Liu, J. Zhang and Z. G. Liu, “Polarization-independent Transparency Window Induced by Complementary Graphene Metasurfaces,” Journal of Physics D: Applied Physics, vol.50, no.1, pp. 015106, 2017.
30. B. H. Huang, W. B. Lu*, X. B. Li, J. Wang and Z. G. Liu, “Waveguide-coupled Hybrid Plasmonic Modulator Based on Grapheme,” Applied Optics, vol.55, no.21,pp.5598, 2016.
31. J. Wang, W. B. Lu*, X. B. Li, and J. L. Liu, “Terahertz Wavefront Control Based on Graphene Manipulated Fabry-Pérotcavities,” IEEE Photonics Technology Letters, vol.28, no.29, pp. 971-974, 2016.
32. J. Wang, W. B. Lu*, J. L. Liu, and T. J. Cui, “Digital Metamaterials Using Graphene,” Plasmonics, vol. 10, no.5, pp. 1141-1145, 2015.
33. J. Wang, W. B. Lu*, X. B. Li, Z. H. Ni, and T. Qiu, “Grapheneplasmon Guided along a Nanoribbon Coupled with a Nanoring,” Journal of Physics D: Applied Physics, vol.47, no.13, pp. 135106, 2014.
34. J. Hu, W. B. Lu*, and J. Wang, “Highly Confined and Tunable Plasmonic Waveguide Ring Resonator Based on Grapheme Nanoribbons,” Europhysics Letters, vol. 106, no. 4, pp. 48002, 2014.
35. J. Wang, W. B. Lu*, X. B. Li, X. F. Gu, and Z. G. Dong, “Plasmonic Metamaterial Based on the Complementary Split Ring Resonators Using Graphene,” Journal of Physics D: Applied Physics, vol. 47, no. 32, pp. 325102, 2014.
36. X. G. Luo, T. Qiu*, W. B. Lu*, and Z. H. Ni*, “Plasmons in Graphene: Recent Progress and Applications,” Materials Science and Engineering: R: Reports, vol. 74, no. 11, pp. 351-376, 2013.
37. H. J. Xu, W. B. Lu*, W. Zhu, Z. G. Dong, and T. J. Cui, “Efficient Manipulation of Surface Plasmon Polariton Waves in Graphene,” Applied Physics Letters, vol. 100, no. 24, pp. 243110, 2012.
38. H. J. Xu, W. B. Lu*, Y. Jiang, and Z. G. Dong, “Beam-scanning Planar Lens Based on Graphene,” Applied Physics Letters, vol. 100, no. 5, pp. 051903, 2012.
39. Y. Jiang, W. B. Lu*, H. J. Xu, Z. G. Dong, and T. J. Cui, “A Planar Electromagnetic “black hole” Based on Graphene,” Physics Letters A, vol. 376, no. 17, pp. 1468-1471, 2012.
40. Y. B. Zhai, X. W. Ping, X. Y. Zhou, J. F. Zhang, W. M. Yu, W. B. Lu, and T. J. Cui, “Fast Computations to Electromagnetic Scattering Properties of Complex Bodies of Revolution Buried and Partly Buried in Layered Lossy Media,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 4, pp. 1431-1440, 2011.
41. W. B. Lu*, Z. F. Ji, Z. G. Dong, X. W. Ping, T. J. Cui, “Left Handed Transmission Properties of Planar Metamaterials Based on Complementary Double-ring Resonators,” Journal of Applied Physics, 108(033717), 2010.
42. W. B. Lu, Q. Y. Zhao, T. J. Cui, “Sub-entire-domain Basis Function Method For Irrectangular Periodic Structures", Progress In Electromagnetics Research, B 5, 91-105.
43. W. B. Lu, T. J. Cui*, “Efficient Method for Full-wave Analysis of Large-scale Finite-sized Periodic Structures,” Journal of Electromagnetic Waves and Applications, 21(14): 2157-2168, 2007.
44. W. B. Lu, T. J. Cui*, H. Zhao, “Acceleration of Fast Multipole Method for Large-scale Periodic Structures with Finite Sizes Using Sub-entire-domain Basis Functions,” IEEE Transactions on Antennas and Propagation, 55(2): 414-421, 2007.
45. W. B. Lu, T. J. Cui*, “Efficiency Analysis of a Novel FMM-CG-FFT Algorithm for Full-Wave Simulation of Finite-Sized Periodic Structures, 2006 IEEE Antennas and Propagation Society International Symposium, 4027-4030.
46. Z. G. Qian, T. J. Cui, W. B. Lu, X. X. Yin, W. Hong and W. C. Chew, “An Improved MoM Model for Line-fed Patch Antennas and Printed Circuits,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 9, pp. 2969-2976, 2005.
47. W. B. Lu, T. J. Cui*, X. X. Yin, Z. G. Qian, W. Hong, “Fast Algorithms For Large-scale Periodic Structures Using Subentire Domain Basis Functions,” IEEE Transactions on Antennas and Propagation, 53(3): 1154-1162, 2005.
48. Q. Cheng, T. J. Cui, W. B. Lu, “Lossy and Retardation Effects on the Localization of EM Waves Using A Left-handed Medium Slab, ” Physics Letters, A 336 (2-3), 235-244, 2005.
49. Q. Cheng, T. J. Cui, W. B. Lu, “A Compact Structure For Energy Localization Using A Thin Grounded Left-handed Medium Slab, ”Optics Express, 13 (3), 770-775, 2005.
50. T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, J. A. Kong, “Localization of Electromagnetic Energy Using A Left-handed-medium Slab, Physical Review B—Condensed Matter and Materials Physics, 71 (4), 045114, 2005.
51.T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, J. A. Kong, “Electronic structure: Wide-band, narrow-band, and Strongly Correlated Systems-Localization of Electromagnetic Energy Using A Left-handed-medium Slab, ”Physical Review-Section B-Condensed Matter, 71 (4), 45114-45114, 2005.
52. W. B. Lu, T. J. Cui, Z. G. Qian, X. X. Yin, W. Hong, “Accurate Analysis of Large-scale Periodic Structures Using an Efficient Sub-entire-domain Basis Function Method, ” IEEE transactions on antennas and propagation, 52 (11), 3078-3085, 2004.
53. T. J. Cui, W. B. Lu, Z. G. Qian, W. Hong, and X. X. Yin, “An Efficient Multiregion Model for Electromagnetic Scattering and Radiation by PEC targets,” IEEE Transactions on Antennas and Propagation, 52(7): 1707-1716, 2004.
54. Z. G. Qian, T. J. Cui, W. B. Lu, X. X. Yin, W. Hong, “A New MOM Model For Line-fed Patch Antennas,” IEEE Antennas and Propagation Society Symposium, 2004. 4, 3633-3636, 2004.
55. T. J. Cui, W. B. Lu, Z. G. Qian, X. X. Yin, W. Hong, “Sub-entire-domain Basis Function Method For Large-scale Periodic Structures,” IEEE Antennas and Propagation Society Symposium, 2004. 4, 4459-4462, 2004.
56. Z. G. Qian, T. J. Cui, W. B. Lu, X. X. Yin, W. Hong, “A New Basis Function For Compact Differential Lines [microstrip lines],” IEEE Antennas and Propagation Society Symposium, 2004. 4, 3617-3620, 2004.
57. W. B. Lu, T. J. Cui, Z. G. Qian, X. X. Yin, W. Hong, “Fast Algorithms For Large-scale Periodic Structures,” IEEE Antennas and Propagation Society Symposium, (4), 4463-4466, 2004.
58. W. Lu, Z. Qian, Z. Hao, “A New Approximate Model For Efficient Implementation of EM Scattering and Radiation by PEC Objects,” Acta Electronica Sinica, 32 (10), 1757-1760, 2004.
59. Z. N. Ying, Z. G. Liu, A. Q. Zhang, W. B. Lu, “Dynamically Tunable Attenuator Based on Effective Surface Plasmon Polaritons and Graphene,” 2019 IEEE Asia-Pacific Microwave Conference (APMC).
60. H. Chen, Z. G. Liu, W. J. Wu, W. B. Lu, “Graphene Based Anomalous Reflection at Microwave frequencies,” 2019 IEEE Asia-Pacific Microwave Conference (APMC), pp. 1587-1588.
61. H. Chen, Z. G. Liu, W. J. Wu, W. B. Lu, A. Q. Zhang, “Flexible Rasorber Based on Graphene,” 2019 International Symposium on Antennas and Propagation (ISAP), pp. 1-2.
62. J. W. Wang, Z. G. Liu, W. B. Lu, H. Chen, A. Q. Zhang, “Tunable Electromagnetically Induced Transparency Via Graphene in Microwave Band,” 2019 International Symposium on Antennas and Propagation (ISAP), pp. 1-2.
63. M. Y. Geng, W. B. Lu, Z. G. Liu, H. Chen, “A Dynamically Frequency-tunable Perfect Microwave Absorber Using Graphene,” 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES), (1), pp. 1-2.
64. W. Q. Lv, W. B. Lu, “Electromagnetic Heating Effect of Graphene Absorber,” 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES), (1), pp. 1-2.
65. W. B. Lu, H. Chen, Z. G. Liu, H. Chen, A. Q. Zhang, “Microwave Devices Based on CVD-grown Graphene,” 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-2.
66. H. Chen, W. B. Lu, Z. G. Liu, A. Q. Zhang, “A Review of Dynamically Tunable Attenuators Based on Graphene,” 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1-3.
67. W. B. Lu, W. Xiang, W. J. Wu, W. Yang, “Analysis of Scattering From Finite and Composite Periodic Structrues Using New Accurate Sub-Entire-Domain Basis Functions Method,” 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), pp. 1-3.
68. 基于并行 MLFMA 分析飞机编队电磁辐射问题, 李洋洋,张强,杨武,张涛,翁瑞,陆卫兵, 微波学报, 22-24, 2018.
69. 基于可调石墨烯超表面的宽角度动态波束控制,李小兵,陆卫兵,刘震国,陈昊, 物理学报, 67 (18), 184101, 2018.
70. 大型武器平台天线辐射计算软件 EMRC 及其应用, 王孟超,杨武,王健,李茁,陆卫兵, 环境技术, 32 (S1), 163-167, 2014.
71. 快速分析理想导体电磁散射及辐射的新近似模型, 陆卫兵,钱治国,郝张成, 电子学报, 32 (10), 1757-1760, 2004.