蒋雁翔

发布者:沈如达发布时间:2023-10-25浏览次数:6750

职称:副教授,博士生导师

办公室:无线谷A11217

Emailyxjiang@seu.edu.cn

本课题组致力于6G/B6G无线通信、机器学习/深度学习/人工智能、凸优化理论与算法等前沿交叉领域的基础理论与前沿应用研究。


已指导学生在通信领域国际顶刊顶会上发表高水平学术论文数十篇、申请/授权国家发明专利数十项、以及获得多种奖励荣誉。


欢迎感兴趣的同学联系攻读硕士、博士学位,欢迎优秀本科生加入课题组参与SRTP项目、竞赛、本科毕设、以及接受科研锻炼提高能力水平。

学习经历:

2014/1-2014/12,美国马里兰大学帕克分校,电子与计算机工程系,访问学者

2003/9-2007/4,yl23455永利官网,yl23455永利官网,通信与信息系统专业,博士(提前攻博)

2001/9-2003/8,yl23455永利官网,无线电工程系,通信与信息系统专业,硕士

1995/9-1999/7,南京大学,电子科学与工程系,电子学与信息系统专业,本科

工作经历:

2007/5-至今,yl23455永利官网,移动通信国家重点实验室

教授课程:

信息论与编码基础(研讨)本科生专业课

现代无线通信系统本科生通选课

数字通信(全英文)研究生专业必修课

科技写作研究生专业选修课

研究方向:

近年来,课题组在基于人工智能的无线通信技术、基于凸优化的绿色通信技术、以及基于随机几何的无线通信网络性能分析等方面取得了若干系统性原创性国际一流科研成果。


近期主要研究方向包括:先进人工智能在未来无线通信中的前沿应用、6G无蜂窝大规模MIMO传输理论与关键技术、6G超低时延超高可靠大规模无线传输理论与关键技术、6G超低能耗智能绿色通信理论与关键技术、移动边缘智能通信理论与关键技术等。

获奖情况:

[1]2022,所指导的本科生卞XX获得IEEE通信学会组织的“通信技术改变世界”竞赛“HONORARY MENTION”(全球前14名)

[2]2019,所指导的研究生李X获得“中兴通讯公司级优秀毕业生”0.1%

[3]2019,所指导的本科生夏XX获得“江苏省优秀本科毕业设计”1%

[4]2018,所指导的研究生陈X获得“中国研究生数学建模大赛”一等奖(1%和“最佳数模报告奖”0.01%


论文著作:

蒋雁翔博士是IEEE高级会员,中国通信学会和中国电子学会高级会员,中国人工智能学会和中国计算机学会专业会员,担任国际期刊IEEE AccessWireless   Communications and Mobile ComputingEURASIP   Journal on Wireless Communications and NetworkingFrontiers in Communications and Networks编委(Associate Editor),担任IEEE   ICCT 2023 Track ChairIWCMC   2023 Symposium ChairIEEE   VTC 2022-Fall Track Chair & Session ChairIEEE GLOBECOM 2018   Session ChairIEEE VTC 2018-Fall   Session ChairIEEE   VTC 2016-Spring Local Patronage and Exhibits Chair,长期担任IEEE  TWCTCOMTVTJSACJSTSPWCLCL等国际一流期刊的审稿人以及IEEE ICCGLOBECOMWCNCVTCPIMRCSPAWC等国际主流会议的技术委员会委员。


已主持/参与国家重点研发计划项目、国家科技重大专项、国家973计划、国家863计划、国家自然科学基金、江苏省自然科学基金、中央高校基本科研业务费、国家重点实验室开放课题、英国EPSRC研究基金、芬兰TEKES技术与创新基金等各类型课题20余项。


IEEE Transactions on   Wireless CommunicationsIEEE   Transactions on CommunicationsIEEE   Transactions on Vehicular Technology等通信领域国际顶级期刊和IEEE ICCGLOBECOM等通信领域国际旗舰会议上已发表SCI/EI学术论文100余篇、已授权国家发明专利61项、已有18项发明专利成果成功转化;已有多篇论文入选“ESI1%高被引论文;入选“斯坦福全球前2%顶尖科学家”榜单;所发表的众多研究成果获国内外同行广泛引用与高度评价。


课题组研究生毕业后就职去向主要为字节跳动、阿里巴巴、百度、华为、中兴、中移动、国家电网、英特尔等互联网与通信行业高技术企业以及其他优势行业头部企业。

新近发表或投稿的代表性国际顶级期刊论文:(*代表通信作者

[1]T. Li, Y. Jiang*, Y. Huang, F.-C.   Zheng, P. Zhu, and D. Wang, "Model-Based Deep Learning for Unsourced   Random Access in mmWave Cell-Free Massive MIMO Systems," Under 1st   Review in IEEE Transactions on Vehicular Technology, pp. 1-14, Oct.   2025.

[2]B. Zhang, Y. Jiang*, H. Li, Y.   Huang, F.-C. Zheng, and D. Wang, "Energy Consumption Minimization in   MEC-empowered CF-mMIMO System Based on Multi-Agent Deep Reinforcement   Learning," Under 2nd Review in IEEE Transactions on Cognitve   Communications and Netorking, pp. 1-10, Sept. 2025.

[3]Y. Zhang, Y. Jiang*, B. Zhang,   F.-C. Zheng, and D. Wang, "K-means and DDPG Based Access Point   Deployment Strategy in Cell-Free Massive MIMO Systems with Hybrid Energy   Supply," Under 2nd Review in IEEE Internet of Things Journal, pp.   1-10, Sept. 2025.

[4]W. Li, Y. Jiang*, X. Xu, F.-C.   Zheng, J. Zhao, and D. Wang, "Energy-Efficient Gated Graph Attention   Network Based Joint AP Clustering and Precoding in Cell-Free Massive MIMO   Systems," Under 1st Review in IEEE Transactions on Green   Communications and Networking, pp. 1-11, Aug. 2025.

[5]Q. Chang, Y. Jiang*, Y. Huang,   F.-C. Zheng, D. Niyato, and X. You, “Multi-Agent Reinforcement Learning based   Cooperative Caching with Low Entropy Communications in Fog-RANs,” IEEE   Transactions on Communications,vol. 73, no. 8, pp. 5935 - 5949,   Aug. 2025.

[6]Y. Huang, Y. Jiang*, F.-C. Zheng,   P. Zhu, and D. Wang, "Energy-Efficient Resource Orchestration for URLLC   in Cell-Free RANs via GNNs with Reliability Enforcement," Under 1st   Review in IEEE Transactions on Wireless Communications, pp. 1-13,   Jul. 2025.

[7]Y. Huang, Y. Jiang*, F.-C. Zheng,   and X. You, “Learning-Driven Rate-Splitting for Energy-Efficient Hardware-Impaired   Cell-Free URLLC Systems,” IEEE Transactions on Wireless Communications,   pp. 1-16, Jul. 2025. [Early Access]

[8]Z. Wu, Y. Jiang*, H.   Li, F.-C. Zheng, and X. You, "Energy-Efficient Hardware-Aware   Precoding in Scalable Cell-Free Massive MIMO Systems: Joint Supervised and   Unsupervised Learning," Under 1st Review in IEEE Transactions on   Wireless Communications, pp. 1-14, June 2025.

[9]S. Wang, M. Yang, and Y. Jiang*, Delay-   and Energy-Efficient Task Offloading in Cell Free Massive MIMO-enabled   Vehicular Fog Computing,” IEEE Transactions on Wireless Communications,   vol. 24, no. 5, pp. 3715-3730, May 2025.

[10]Y. Huang, Y. Jiang*, F.-C. Zheng,   P. Zhu, and T. Quek, “Effective Energy Efficiency of Cell-Free mMIMO Systems   for URLLC with Probabilistic Delay Bounds and Finite Blocklength   Communications,” IEEE Transactions on Wireless Communications, vol.   24, no. 3, pp. 2279-2296, Mar. 2025.

[11]Q. Tan,Y.   Jiang*, Y.   Huang,F.-C. Zheng, and D. Niyato, “Access   Points Cooperation Based Secretive Coded Caching in Fog Radio   Access Networks,” IEEE Transactions   onVehicular Technology,vol. 74, no. 2, pp. 2826-2839, Feb. 2025.

[12]Y. Chen,Y.   Jiang*, Y.   Huang,F.-C. Zheng, and D. Niyato, “Edge   Cooperation Based Coded Caching in Fog Radio Access Networks,” IEEE Transactions onVehicular Technology, vol. 74, no. 1, pp. 1238-1251, Jan. 2025.

[13]H. Li, Y. Jiang*,Y.   Huang, F.-C. Zheng, and G. Wu, “A Multi-Agent DRL Method for Distributed   Energy-Efficient Association and Hybrid Precoding in mmWave Cell-Free Massive   MIMO Systems,” IEEE Communications Letters,vol.   29, no. 1, pp. 70-74, Jan. 2025.

[14]Y. Zhang,Y.   Jiang*,Y. Huang, and F.-C. Zheng,   “Energy Consumption Optimization in Cell-Free Massive MIMO Systems with   Hybrid Energy Supply,” IEEE Wireless Communications Letters,vol.   14, no. 1, pp. 98-102, Jan. 2025.

[15]M. Zhang,Y.   Jiang*, F.-C.   Zheng, D. Wang, M. Bennis,A.   Jamalipour, andX. You, “Communication Efficient   Federated Reinforcement Learning Method for Cooperative Edge Caching in Fog   Radio Access Networks,” IEEE   Transactions onWireless Communications,vol. 23, no. 12, pp. 18409-18422, Dec. 2024.

[16]Y. Huang,Y.   Jiang*,   F.-C. Zheng, P. Zhu, D. Wang, and X. You, “Energy Efficiency Optimization   of User-Centric Cell-free Massive MIMO System for URLLC with   Finite Blocklength Communications,” IEEE Transactions onVehicular Technology, vol. 73, no. 9, pp. 12081-12814, Sept. 2024.

[17]Y. Huang,Y.   Jiang*,   F.-C. Zheng, P. Zhu, D. Wang, and X. You, “Spectral and Energy Efficiency   Trade-off in Cell-free Massive MIMO-aided URLLC System,” IEEE Transactions onVehicular Technology,vol. 73, no. 9, pp. 13023-13037, Sept. 2024.

[18]Z. Wu, Y. Jiang*, Y. Huang,   F.-C. Zheng, and P. Zhu, “Energy-Efficient Joint AP Selection and Power   Control in Cell-Free Massive MIMO Systems: A Hybrid Action Space-DRL   Approach,”IEEE   Communications Letters,vol. 28, no. 9,   pp. 2086-2090, Sept. 2024.

[19]Y. Huang,Y. Jiang*,   F.-C. Zheng, P. Zhu, D. Wang, and X. You, “Enhancing   Energy-Efficient URLLC in Cell-Free mMIMO   Systems With Transceiver Impairments: An RSMA-DRL Based Approach,” IEEE   Wireless Communications Letters,vol. 13, no. 5, pp.   1443-1447, May 2024.

[20]J. Yan,M. Zhang,Y. Jiang*, F.-C.   Zheng, Q. Chang,K. M.   Abualnaja, S. Mumtaz, and X.   You,“Deep   Reinforcement Learning based Joint Edge Caching and Content   Recommendation with Inconsistent File Sizesin   Fog-RANs,” IEEE Transactions on   Vehicular Technology, vol.   73, no. 3, pp. 4264-4276, Mar. 2024.

[21]Q. Tan,Y.   Jiang*,   L. Zhang,Y. Cui, D. Niyato,F.-C.   Zheng, andX. You,“Secretive   Coded Caching with Nonuniform Demands in Fog Radio Access   Networks,” IEEE   Communications Letters,vol.   27, no. 8, pp. 2252-2256, Aug. 2023.

[22]S. Wang, G. Chen, Y. Jiang*,   and X. You, “A   Cluster-based V2V Approach for Mixed Data Dissemination in Urban Scenario of   IoVs,” IEEE Transactions on   Vehicular Technology,vol. 72, no. 2, pp. 2907-2920,   Mar. 2023.

[23]Y. Tao, Y. Jiang*, F.-C.   Zheng, Z. Wang, P. Zhu, M. Tao, D. Niyato, and X. You, “Content Popularity PredictionBased   on Quantized Federated Bayesian Learning in Fog Radio   Access Networks,” IEEE   Transactions onCommunications,   vol. 71, no. 2, pp. 893-907, Feb. 2023.

[24]Y. Jiang*, B. Wang, F.-C.   Zheng, M. Bennis, and X. You, “Joint MDS Codes and Weighted Graph Based Coded   Caching in Fog Radio Access Networks,” IEEE Transactions on Wireless Communications, vol. 21, no.   9, pp. 6789-6802, Sep. 2022.

[25]Y. Jiang*, Y. Wu, F.-C.   Zheng, M. Bennis, and X. You, “Federated Learning Based Content Popularity   Prediction in Fog Radio Access Networks,” IEEE Transactions on Wireless   Communications, vol. 21, no. 6, pp. 3836-3849, Jun. 2022.

[26]Y. Jiang*, X. Chen, F.-C.   Zheng, D. Niyato, and X. You, “Brain Storm Optimization-Based Edge Caching in   Fog Radio Access Networks,” IEEE   Transactions on Vehicular Technology,vol. 70, no. 2,pp.   1807-1820, Feb. 2021.

[27]Y. Jiang*, C. Wan, M.   Tao, F.-C. Zheng, P. Zhu, X. Gao, and X. You, “Analysis and Optimization of   Fog Radio Access Networks with Hybrid Caching: Delay and Energy Efficiency,” IEEE Transactions on Wireless   Communications, vol. 20, no. 1, pp. 69-82, Jan. 2021.

[28]Y. Jiang*, H. Feng, F.-C.   Zheng, D. Niyato, and X. You, “Deep Learning-Based Edge Caching in Fog Radio   Access Networks,” IEEE   Transactions on Wireless Communications, vol. 19, no.   12, pp. 8442- 8454, Dec. 2020.

[29]Y. Jiang*, A.   Peng,   C. Wan, Y. Cui, X. You, F.-C. Zheng, and S. Jin, “Analysis and Optimization   on Cache-enabled Fog Radio Access Networks: Successful Transmission   Probability, Fractional Offloaded Traffic and Delay,”IEEE Transactions on   Vehicular Technology, vol. 69, no. 5, pp. 5219-5231, May 2020.

[30]Y. Jiang*, Y.   Hu,   M. Bennis, F.-C. Zheng, and X. You, “A Mean Field Game-Based Distributed Edge   Caching in Fog Radio Access Networks,” IEEE Transactions on Communications, vol. 68, no. 3,   pp. 1567-1580, Mar. 2020.

[31]Y. Jiang*,W.   Huang, M. Bennis, and F.-C. Zheng, “Decentralized asynchronous coded caching   design and performance analysis in fog radio access networks,”IEEE Transactions on   Mobile Computing, vol. 19, no.3,  pp. 540-551,   Mar. 2020.

[32]Y. Jiang*,P. Li, Z. Ding, F.-C.   Zheng, M. Ma, and X. You, “Joint transmitter and receiver design for pattern   division multiple access,” IEEE   Transactions on Mobile Computing,vol.   18, no. 4, pp. 885-895, Apr. 2019.

[33]Y. Jiang*,M. Ma, M.   Bennis,F.-C. Zheng, and X. You, “User   preference learning based edge caching for fog radio access network,” IEEE Transactions on Communications,   vol. 67, no. 2, pp. 1268-1283, Feb. 2019.

[34]Y. Jiang*, N. Lu, Y.   Chen,  F.-C. Zheng, M. Bennis, X. Gao,   and X. You, “Energy efficient noncooperative power control in small-cell   networks,”IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 7540-7547,   Aug. 2017.

[35]Y. Jiang*, Q. Liu, F.-C. Zheng,   X. Gao, and X. You, “Energy efficient joint resource allocation and power   control for D2D communications,”IEEE Transactions on Vehicular Technology, vol.   65, no. 8, pp. 6119-6127, Aug. 2016.


新近发表的代表性国际旗舰顶级会议论文:(*代表通信作者)

[1]Y. Huang, Y. Jiang*, F.-C. Zheng,   P. Zhu, and D. Wang, "Energy-Efficient Resource Orchestration in   EDU-based Cell-Free RAN for URLLC," IEEE GLBOECOM 2025, Taibei,   Taiwan, Dec. 2025.

[2]H. Li, Y. Jiang*, F.-C. Zheng, G.   Wu, P. Zhu, and D. Wang, "Energy-Efficient Dynamic-Grouped-Adaptive   Connected Hybrid Precoding with DRL in Cell-Free Massive MIMO Systems," IEEE GLBOECOM   2025, Taibei, Taiwan, Dec. 2025.

[3]Y. Yang, Y. Jiang*, F.-C. Zheng, Y.   Huang, P. Zhu, and D. Wang, "Cooperative Resource Management for   Efficient Energy-Traffic Matching in Cell-Free Massive MIMO Systems with   Hybrid Energy Supply," IEEE GLBOECOM 2025, Taibei, Taiwan,   Dec. 2025.

[4]Y. Huang,Y.   Jiang*,   F.-C. Zheng,andP.   Zhu, “GNN-Based RSMA for Energy Efficiency in Hardware-Impaired   Cell-Free URLLC Systems,” IEEEICC 2025. Jun.   2025, pp. 1-6.

[5]T. Li, Y. Jiang*, Y. Huang, P.   Zhu, F.-C. Zheng, and D. Wang, “Model-Based Deep Learning for Massive Access   in mmWave Cell-Free Massive MIMO System,” IEEE ICC 2024 Workshop, Jun.   2024, pp. 1-6.

[6]Y. Lu,Y.   Jiang*,   L. Zhang,M. Bennis, D. Niyato, and X.   You, “Meta Reinforcement Learning-Based Computation Offloading in   RIS-aided MEC-enabled Cell-Free RAN,” IEEEICC 2023,May   2023, pp. 1-7.

[7]Q. Chang, B. Fan,Y. Jiang*, F.-C. Zheng,M.   Bennis, and X. You, “Security-aware Cooperative Caching in Fog Radio Access   Networks,”IEEEGLOBECOM 2022 Workshop, Dec. 2022, pp.   1-6..

[8]Y. Wang,Y.   Jiang*,   F.-C. Zheng,D. Niyato, and X.   You, “Cooperative Edge Caching via  Federated   Deep Deterministic Policy Gradient Learning in Fog-RANs,” IEEEGLOBECOM 2022  Workshop, Dec. 2022, pp. 1-6.

[9]L. Zhang, Y. Jiang*, F.-C. Zheng,   M. Bennis, and X. You, “Computation Offloading and Resource Allocation in   F-RANs: A Federated Deep Reinforcement Learning Approach,” IEEEICC 2022 Workshop, May 2022, pp. 1-6.

[10]Y. Chen,Y.   Jiang*,   F.-C. Zheng,M. Bennis, and X.   You, “Coded Caching via Federated Deep Reinforcement Learning in Fog Radio   Access Networks,” IEEEICC 2022 Workshop,May   2022, pp. 1-6.

[11]Z. Wang,Y.   Jiang*,   F.-C. Zheng,M. Bennis, and X.   You, “Content Popularity Prediction in  Fog-RANs: A Clustered   Federated Learning Based  Approach,” IEEEICC 2022,May 2022, pp.   1-6.

[12]Q. Chang,Y.   Jiang*,   F.-C. Zheng,M. Bennis, and X.   You, “Cooperative Edge Caching via Multi Agent Reinforcement Learning in   Fog Radio Access Networks,” IEEEICC 2022,May 2022, pp.   1-6.

[13]Q. Tan,Y.   Jiang*,   F.-C. Zheng,M. Bennis, and X.   You, “MDS Codes Based Group Coded Caching in Fog Radio Access Networks,” IEEEICC 2022,May   2022, pp. 1-6.

[14]B. Fan,Y.   Jiang*,   F.-C. Zheng,M. Bennis, and X.   You, “Social-aware Cooperative Caching in Fog Radio Access Networks,” IEEEICC 2022,May   2022, pp. 1-6.

[15]Y. Tao, Y. Jiang*, F.-C.   Zheng, M. Bennis, and X. You, “Content Popularity Prediction in Fog-RANs: A   Bayesian Learning Approach,” IEEEGLOBECOM 2021,   Dec. 2021, pp. 1-6.

[16]M. Zhang, Y. Jiang*, F.-C.   Zheng, M. Bennis, and X. You, “Cooperative Edge Caching via Federated Deep   Reinforcement Learning in Fog-RANs,” IEEE ICC 2021 Workshop,Jun.   2021, pp. 1-6.

[17]X. Chen,Y.   Jiang*,B. Fan, F.-C. Zheng, D. Niyato, and X.   You, “Hierarchical Cooperative Caching in Fog Radio Access Networks: A Brain   Storm Optimization Approach,” IEEE   GLOBECOM 2020, Dec. 2020, pp. 1-6.

[18]Y. Wu,Y.   Jiang*,   M. Bennis, F.-C. Zheng, X. Gao, and X. You, “Content Popularity Prediction in   Fog Radio Access Networks: A Federated Learning Based Approach,” IEEE ICC 2020, Jun. 2020, pp.   1-6.

[19]J. Yan,Y.   Jiang*,   F.-C. Zheng,F. R. Yu, X.   Gao, and X. You, “Distributed Edge Caching with Content Recommendation   in Fog Radio Access Network via Deep Reinforcement Learning,” IEEE ICC 2020 Workshop, Jun.   2020,pp. 1-6.

[20]B. Wang,Y.   Jiang*,   F.-C. Zheng,M. Bennis, X.   Gao, and X. You, “Joint Redundant MDS Codes and Cluster Cooperation Based   Coded Caching in Fog Radio Access Networks,” IEEE ICC 2020 Workshop,Jun.   2020, pp. 1-6.

[21]C. Wan, Y.   Jiang*, F.-C. Zheng, P. Zhu, X.   Gao, and X. You, “Delay-Energy Efficiency Tradeoff in Fog Radio Access   Networks with Hybrid Caching,” IEEE   GLOBECOM 2019 Workshop, Hawaii, USA, Dec. 2019, pp. 1-6.

[22]H. Feng, Y.   Jiang*, D. Niyato, F.-C. Zheng,   and X. You, “Content Popularity Prediction via Deep Learning in Cache-enabled   Fog Radio Access Networks,” IEEE   GLOBECOM 2019, Hawaii, USA, Dec. 2019, pp. 1-6.

[23]C. Xia, Y.   Jiang*, M. Peng, F.-C. Zheng, M.   Bennis, and X. You, Cooperative Edge Caching in   Fog Radio Access Networks: A Pigeon Inspired Optimization Approach,IEEE GLOBECOM 2019, Hawaii, USA, Dec. 2019, pp. 1-6.

[24]H. Ge, Y. Jiang*,   M. Bennis, F.-C. Zheng, and X. You, “Edge   Caching Resource Allocation in Fog Radio Access Networks: An Incentive   Mechanism based Approach,”IEEE ICC 2019 Workshop, Shanghai, China, May 2019, pp. 1-6.

[25]A. Peng, Y. Jiang*, M. Bennis, F.-C. Zheng, and X. You, “Performance Analysis and Caching Design in Fog Radio Access   Networks,” IEEE GLOBECOM2018 Workshop, Abu   Dhabi, UAE, Dec. 2018, pp.1-6.

[26]Y. Jiang*,   M. Ma, M. Bennis, F.-C. Zheng, and X. You, “A   Novel Caching Policy with Content   Popularity Prediction and User Preference Learning in Fog-RAN,” IEEE GLOBECOM2017 Workshop, Singapore,   Dec. 2017, pp. 1-6.

科研项目:

项目名称

项目类别

项目职责

工作类别

项目金额

6G超低时延超高可靠大规模无线传输技术

国家重点研发计划

项目

2021/12-2024/12

应用基础研究

XX

雾无线接入网低时延高能效边缘缓存理论方法研究

国家自然科学基金

面上项目

2020/1-2023/12

应用基础研究

XX

超蜂窝网络协作机制与资源优化方法

国家973计划

重大项目

2012/1-2016/10

应用基础研究

XX